MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. A390.0 Aluminum

Grade C-2 titanium belongs to the titanium alloys classification, while A390.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is A390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
110 to 140
Elastic (Young's, Tensile) Modulus, GPa 110
75
Elongation at Break, % 17
0.87 to 0.91
Fatigue Strength, MPa 200
70 to 100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
28
Tensile Strength: Ultimate (UTS), MPa 390
190 to 290
Tensile Strength: Yield (Proof), MPa 310
190 to 290

Thermal Properties

Latent Heat of Fusion, J/g 420
640
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
580
Melting Onset (Solidus), °C 1610
480
Specific Heat Capacity, J/kg-K 540
880
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 8.7
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
20
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
67

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
7.3
Embodied Energy, MJ/kg 510
140
Embodied Water, L/kg 110
950

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
1.6 to 2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 460
240 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
52
Strength to Weight: Axial, points 24
19 to 30
Strength to Weight: Bending, points 26
27 to 36
Thermal Diffusivity, mm2/s 8.8
56
Thermal Shock Resistance, points 30
9.0 to 14

Alloy Composition

Aluminum (Al), % 0
75.3 to 79.6
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
4.0 to 5.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.5
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
16 to 18
Titanium (Ti), % 98.8 to 100
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.2