MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. ASTM A387 Grade 22L Class 1

Grade C-2 titanium belongs to the titanium alloys classification, while ASTM A387 grade 22L class 1 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is ASTM A387 grade 22L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
150
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
20
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 390
500
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 320
460
Melting Completion (Liquidus), °C 1660
1470
Melting Onset (Solidus), °C 1610
1430
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
40
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.7
Embodied Energy, MJ/kg 510
23
Embodied Water, L/kg 110
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
83
Resilience: Unit (Modulus of Resilience), kJ/m3 460
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 8.8
11
Thermal Shock Resistance, points 30
14

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 0
2.0 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
95.2 to 96.8
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0