MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. ASTM Grade LCB Steel

Grade C-2 titanium belongs to the titanium alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
27
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 390
540
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
18
Embodied Water, L/kg 110
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
120
Resilience: Unit (Modulus of Resilience), kJ/m3 460
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.8
14
Thermal Shock Resistance, points 30
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
97 to 100
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.045
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0
0 to 1.0