MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. EN 1.1181 Steel

Grade C-2 titanium belongs to the titanium alloys classification, while EN 1.1181 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is EN 1.1181 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
19 to 20
Fatigue Strength, MPa 200
190 to 260
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 390
560 to 620
Tensile Strength: Yield (Proof), MPa 310
280 to 380

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
42
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
2.1
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
19
Embodied Water, L/kg 110
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
210 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
20 to 22
Strength to Weight: Bending, points 26
19 to 21
Thermal Diffusivity, mm2/s 8.8
11
Thermal Shock Resistance, points 30
19 to 21

Alloy Composition

Carbon (C), % 0 to 0.1
0.32 to 0.39
Chromium (Cr), % 0
0 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
97.4 to 99.18
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0 to 0.4
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0