MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. EN 1.4405 Stainless Steel

Grade C-2 titanium belongs to the titanium alloys classification, while EN 1.4405 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is EN 1.4405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
17
Fatigue Strength, MPa 200
370
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
860
Tensile Strength: Yield (Proof), MPa 310
610

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 510
39
Embodied Water, L/kg 110
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
130
Resilience: Unit (Modulus of Resilience), kJ/m3 460
950
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 26
26
Thermal Diffusivity, mm2/s 8.8
4.6
Thermal Shock Resistance, points 30
29

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
15 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
73.6 to 80.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.7 to 1.5
Nickel (Ni), % 0 to 0.050
4.0 to 6.0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0