MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. EN 1.4516 Stainless Steel

Grade C-2 titanium belongs to the titanium alloys classification, while EN 1.4516 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 390
550
Tensile Strength: Yield (Proof), MPa 310
320

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
720
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
2.0
Embodied Energy, MJ/kg 510
28
Embodied Water, L/kg 110
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 26
19
Thermal Diffusivity, mm2/s 8.8
8.1
Thermal Shock Resistance, points 30
20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
83.3 to 89
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.050
0.5 to 1.5
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 100
0.050 to 0.35
Residuals, % 0 to 0.4
0