MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. SAE-AISI 1211 Steel

Grade C-2 titanium belongs to the titanium alloys classification, while SAE-AISI 1211 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is SAE-AISI 1211 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
140 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
11 to 29
Fatigue Strength, MPa 200
200 to 280
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 390
430 to 580
Tensile Strength: Yield (Proof), MPa 310
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
52
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
18
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
61 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
180 to 550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
15 to 21
Strength to Weight: Bending, points 26
16 to 20
Thermal Diffusivity, mm2/s 8.8
14
Thermal Shock Resistance, points 30
14 to 18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
98.7 to 99.23
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0.070 to 0.12
Sulfur (S), % 0
0.1 to 0.15
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0