MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. C67400 Bronze

Grade C-2 titanium belongs to the titanium alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
22 to 28
Poisson's Ratio 0.32
0.31
Rockwell B Hardness 84
78 to 85
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 390
480 to 610
Tensile Strength: Yield (Proof), MPa 310
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
130
Melting Completion (Liquidus), °C 1660
890
Melting Onset (Solidus), °C 1610
870
Specific Heat Capacity, J/kg-K 540
400
Thermal Conductivity, W/m-K 21
100
Thermal Expansion, µm/m-K 8.7
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
23
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
26

Otherwise Unclassified Properties

Base Metal Price, % relative 37
23
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
2.8
Embodied Energy, MJ/kg 510
48
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 460
300 to 660
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 24
17 to 22
Strength to Weight: Bending, points 26
17 to 20
Thermal Diffusivity, mm2/s 8.8
32
Thermal Shock Resistance, points 30
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
57 to 60
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0 to 0.050
0 to 0.25
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 98.8 to 100
0
Zinc (Zn), % 0
31.1 to 40
Residuals, % 0
0 to 0.5