MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. N08020 Stainless Steel

Grade C-2 titanium belongs to the titanium alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
15 to 34
Fatigue Strength, MPa 200
210 to 240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
610 to 620
Tensile Strength: Yield (Proof), MPa 310
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1410
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
38
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 31
6.6
Embodied Energy, MJ/kg 510
92
Embodied Water, L/kg 110
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 460
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 26
20
Thermal Diffusivity, mm2/s 8.8
3.2
Thermal Shock Resistance, points 30
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
29.9 to 44
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
32 to 38
Niobium (Nb), % 0
0 to 1.0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0