MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. S40977 Stainless Steel

Grade C-2 titanium belongs to the titanium alloys classification, while S40977 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
21
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.32
0.28
Rockwell B Hardness 84
76
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 390
510
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 420
270
Maximum Temperature: Mechanical, °C 320
720
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.9
Embodied Energy, MJ/kg 510
27
Embodied Water, L/kg 110
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
92
Resilience: Unit (Modulus of Resilience), kJ/m3 460
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 8.8
6.7
Thermal Shock Resistance, points 30
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
83.9 to 89.2
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0 to 0.050
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0