MakeItFrom.com
Menu (ESC)

Grade C-2 Titanium vs. S82122 Stainless Steel

Grade C-2 titanium belongs to the titanium alloys classification, while S82122 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-2 titanium and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
260
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
34
Fatigue Strength, MPa 200
360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 390
680
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1420
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 8.7
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
12
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.6
Embodied Energy, MJ/kg 510
37
Embodied Water, L/kg 110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
210
Resilience: Unit (Modulus of Resilience), kJ/m3 460
510
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 26
22
Thermal Diffusivity, mm2/s 8.8
4.0
Thermal Shock Resistance, points 30
19

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
20.5 to 21.5
Copper (Cu), % 0
0.5 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
68.9 to 75.4
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.050
1.5 to 2.5
Nitrogen (N), % 0
0.15 to 0.2
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0