MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. 6351 Aluminum

Grade C-3 titanium belongs to the titanium alloys classification, while 6351 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 13
7.8 to 18
Fatigue Strength, MPa 260
79 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 500
140 to 310
Tensile Strength: Yield (Proof), MPa 430
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 420
410
Maximum Temperature: Mechanical, °C 320
160
Melting Completion (Liquidus), °C 1660
650
Melting Onset (Solidus), °C 1610
570
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 21
180
Thermal Expansion, µm/m-K 8.7
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
46
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
150

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 31
8.3
Embodied Energy, MJ/kg 510
150
Embodied Water, L/kg 110
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 880
65 to 540
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 31
14 to 32
Strength to Weight: Bending, points 31
22 to 38
Thermal Diffusivity, mm2/s 8.5
72
Thermal Shock Resistance, points 39
6.1 to 14

Alloy Composition

Aluminum (Al), % 0
96 to 98.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0
0.4 to 0.8
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Silicon (Si), % 0
0.7 to 1.3
Titanium (Ti), % 98.8 to 100
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15