MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. Grade CW6M Nickel

Grade C-3 titanium belongs to the titanium alloys classification, while grade CW6M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is grade CW6M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 13
29
Fatigue Strength, MPa 260
210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
84
Tensile Strength: Ultimate (UTS), MPa 500
560
Tensile Strength: Yield (Proof), MPa 430
310

Thermal Properties

Latent Heat of Fusion, J/g 420
330
Maximum Temperature: Mechanical, °C 320
970
Melting Completion (Liquidus), °C 1660
1530
Melting Onset (Solidus), °C 1610
1470
Specific Heat Capacity, J/kg-K 540
430
Thermal Expansion, µm/m-K 8.7
12

Otherwise Unclassified Properties

Base Metal Price, % relative 37
65
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 31
13
Embodied Energy, MJ/kg 510
170
Embodied Water, L/kg 110
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140
Resilience: Unit (Modulus of Resilience), kJ/m3 880
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 31
17
Thermal Shock Resistance, points 39
16

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
17 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
0 to 3.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
17 to 20
Nickel (Ni), % 0 to 0.050
54.9 to 66
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0