MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. SAE-AISI 1030 Steel

Grade C-3 titanium belongs to the titanium alloys classification, while SAE-AISI 1030 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is SAE-AISI 1030 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
150 to 160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
14 to 22
Fatigue Strength, MPa 260
210 to 320
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 500
530 to 590
Tensile Strength: Yield (Proof), MPa 430
300 to 490

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 31
1.4
Embodied Energy, MJ/kg 510
18
Embodied Water, L/kg 110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
77 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 880
230 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 31
19 to 21
Strength to Weight: Bending, points 31
18 to 20
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 39
17 to 19

Alloy Composition

Carbon (C), % 0 to 0.1
0.28 to 0.34
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
98.7 to 99.12
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0