MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. C62500 Bronze

Grade C-3 titanium belongs to the titanium alloys classification, while C62500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 13
1.0
Fatigue Strength, MPa 260
460
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 500
690
Tensile Strength: Yield (Proof), MPa 430
410

Thermal Properties

Latent Heat of Fusion, J/g 420
230
Maximum Temperature: Mechanical, °C 320
230
Melting Completion (Liquidus), °C 1660
1050
Melting Onset (Solidus), °C 1610
1050
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
47
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 31
3.3
Embodied Energy, MJ/kg 510
55
Embodied Water, L/kg 110
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 880
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 8.5
13
Thermal Shock Resistance, points 39
24

Alloy Composition

Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
78.5 to 84
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
3.5 to 5.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0
0 to 0.5