MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. N08026 Nickel

Grade C-3 titanium belongs to the titanium alloys classification, while N08026 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is N08026 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
34
Fatigue Strength, MPa 260
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
80
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 430
270

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1430
Melting Onset (Solidus), °C 1610
1380
Specific Heat Capacity, J/kg-K 540
460
Thermal Conductivity, W/m-K 21
12
Thermal Expansion, µm/m-K 8.7
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
41
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 31
7.2
Embodied Energy, MJ/kg 510
98
Embodied Water, L/kg 110
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
170
Resilience: Unit (Modulus of Resilience), kJ/m3 880
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 8.5
3.2
Thermal Shock Resistance, points 39
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
22 to 26
Copper (Cu), % 0
2.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
24.4 to 37.9
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 6.7
Nickel (Ni), % 0 to 0.050
33 to 37.2
Nitrogen (N), % 0
0.1 to 0.16
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0