MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. R05255 Alloy

Grade C-3 titanium belongs to the titanium alloys classification, while R05255 alloy belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is R05255 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
70
Tensile Strength: Ultimate (UTS), MPa 500
540
Tensile Strength: Yield (Proof), MPa 430
450

Thermal Properties

Latent Heat of Fusion, J/g 420
140
Specific Heat Capacity, J/kg-K 540
140
Thermal Conductivity, W/m-K 21
59
Thermal Expansion, µm/m-K 8.7
6.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
17
Embodied Water, L/kg 110
630

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
100
Resilience: Unit (Modulus of Resilience), kJ/m3 880
530
Stiffness to Weight: Axial, points 13
6.3
Stiffness to Weight: Bending, points 35
11
Strength to Weight: Axial, points 31
9.1
Strength to Weight: Bending, points 31
8.9
Thermal Diffusivity, mm2/s 8.5
25
Thermal Shock Resistance, points 39
31

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.010
Hydrogen (H), % 0 to 0.015
0 to 0.0015
Iron (Fe), % 0 to 0.25
0 to 0.010
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0 to 0.050
0 to 0.010
Niobium (Nb), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0 to 0.4
0 to 0.015
Silicon (Si), % 0
0 to 0.0050
Tantalum (Ta), % 0
95.9 to 98
Titanium (Ti), % 98.8 to 100
0 to 0.010
Tungsten (W), % 0
2.0 to 3.5
Residuals, % 0 to 0.4
0