MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. S32615 Stainless Steel

Grade C-3 titanium belongs to the titanium alloys classification, while S32615 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
170
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 13
28
Fatigue Strength, MPa 260
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 420
370
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1660
1350
Melting Onset (Solidus), °C 1610
1310
Specific Heat Capacity, J/kg-K 540
500
Thermal Expansion, µm/m-K 8.7
15

Otherwise Unclassified Properties

Base Metal Price, % relative 37
24
Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 31
4.4
Embodied Energy, MJ/kg 510
63
Embodied Water, L/kg 110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
140
Resilience: Unit (Modulus of Resilience), kJ/m3 880
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 31
21
Thermal Shock Resistance, points 39
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 0
16.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
46.4 to 57.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0 to 0.050
19 to 22
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
4.8 to 6.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 100
0
Residuals, % 0 to 0.4
0