MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. 359.0 Aluminum

Grade C-5 titanium belongs to the titanium alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 6.7
3.8 to 4.9
Fatigue Strength, MPa 510
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 1000
340 to 350
Tensile Strength: Yield (Proof), MPa 940
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
600
Melting Onset (Solidus), °C 1560
570
Specific Heat Capacity, J/kg-K 560
910
Thermal Conductivity, W/m-K 7.1
140
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
120

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.4
2.6
Embodied Carbon, kg CO2/kg material 38
8.0
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
450 to 540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
54
Strength to Weight: Axial, points 63
37 to 38
Strength to Weight: Bending, points 50
42 to 43
Thermal Diffusivity, mm2/s 2.9
59
Thermal Shock Resistance, points 71
16 to 17

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
88.9 to 91
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
8.5 to 9.5
Titanium (Ti), % 87.5 to 91
0 to 0.2
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15