MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. ACI-ASTM CA6NM Steel

Grade C-5 titanium belongs to the titanium alloys classification, while ACI-ASTM CA6NM steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is ACI-ASTM CA6NM steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
250
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7
17
Fatigue Strength, MPa 510
380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
850
Tensile Strength: Yield (Proof), MPa 940
620

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
770
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
25
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.5
Embodied Energy, MJ/kg 610
34
Embodied Water, L/kg 200
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
130
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
30
Strength to Weight: Bending, points 50
26
Thermal Diffusivity, mm2/s 2.9
6.7
Thermal Shock Resistance, points 71
31

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.060
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
78.4 to 84.6
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 1.0
Nickel (Ni), % 0 to 0.050
3.5 to 4.5
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0