MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. EN 1.1203 Steel

Grade C-5 titanium belongs to the titanium alloys classification, while EN 1.1203 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7
12 to 15
Fatigue Strength, MPa 510
210 to 310
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Tensile Strength: Ultimate (UTS), MPa 1000
690 to 780
Tensile Strength: Yield (Proof), MPa 940
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
48
Thermal Expansion, µm/m-K 9.6
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
2.1
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
19
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
310 to 610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
25 to 28
Strength to Weight: Bending, points 50
22 to 24
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 71
22 to 25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.52 to 0.6
Chromium (Cr), % 0
0 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.1 to 98.9
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0 to 0.4
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0