MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. EN 1.4306 Stainless Steel

Grade C-5 titanium belongs to the titanium alloys classification, while EN 1.4306 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is EN 1.4306 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
190 to 270
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7
14 to 45
Fatigue Strength, MPa 510
190 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 1000
580 to 900
Tensile Strength: Yield (Proof), MPa 940
210 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
960
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
3.2
Embodied Energy, MJ/kg 610
45
Embodied Water, L/kg 200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
110 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
21 to 32
Strength to Weight: Bending, points 50
20 to 27
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 71
13 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
18 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
64.8 to 72
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
10 to 12
Nitrogen (N), % 0
0 to 0.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0