MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. EN 1.4655 Stainless Steel

Grade C-5 titanium belongs to the titanium alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 6.7
23 to 25
Fatigue Strength, MPa 510
320
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 1000
720 to 730
Tensile Strength: Yield (Proof), MPa 940
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 340
1050
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
15
Density, g/cm3 4.4
7.7
Embodied Carbon, kg CO2/kg material 38
2.9
Embodied Energy, MJ/kg 610
41
Embodied Water, L/kg 200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
510 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
26
Strength to Weight: Bending, points 50
23
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 71
20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0
1.0 to 3.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
63.6 to 73.4
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0 to 0.050
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0