MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. Grade CW12MW Nickel

Grade C-5 titanium belongs to the titanium alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 6.7
4.6
Fatigue Strength, MPa 510
130
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
85
Tensile Strength: Ultimate (UTS), MPa 1000
560
Tensile Strength: Yield (Proof), MPa 940
310

Thermal Properties

Latent Heat of Fusion, J/g 410
320
Maximum Temperature: Mechanical, °C 340
960
Melting Completion (Liquidus), °C 1610
1610
Melting Onset (Solidus), °C 1560
1560
Specific Heat Capacity, J/kg-K 560
410
Thermal Expansion, µm/m-K 9.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
70
Density, g/cm3 4.4
9.1
Embodied Carbon, kg CO2/kg material 38
13
Embodied Energy, MJ/kg 610
180
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
22
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 63
17
Strength to Weight: Bending, points 50
17
Thermal Shock Resistance, points 71
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.12
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
4.5 to 7.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0 to 0.050
49.2 to 60.1
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 3.5 to 4.5
0.2 to 0.4
Residuals, % 0 to 0.4
0