MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. Monel R-405

Grade C-5 titanium belongs to the titanium alloys classification, while Monel R-405 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is Monel R-405.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Elongation at Break, % 6.7
9.1 to 39
Fatigue Strength, MPa 510
210 to 250
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 40
62
Tensile Strength: Ultimate (UTS), MPa 1000
540 to 630
Tensile Strength: Yield (Proof), MPa 940
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
900
Melting Completion (Liquidus), °C 1610
1350
Melting Onset (Solidus), °C 1560
1300
Specific Heat Capacity, J/kg-K 560
430
Thermal Conductivity, W/m-K 7.1
23
Thermal Expansion, µm/m-K 9.6
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 36
50
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
7.9
Embodied Energy, MJ/kg 610
110
Embodied Water, L/kg 200
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
49 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
120 to 370
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 35
21
Strength to Weight: Axial, points 63
17 to 20
Strength to Weight: Bending, points 50
17 to 18
Thermal Diffusivity, mm2/s 2.9
5.9
Thermal Shock Resistance, points 71
17 to 20

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0
28 to 34
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 2.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
63 to 72
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0.025 to 0.060
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0