MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. SAE-AISI 4340 Steel

Grade C-5 titanium belongs to the titanium alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
210 to 360
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7
12 to 22
Fatigue Strength, MPa 510
330 to 740
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 1000
690 to 1280
Tensile Strength: Yield (Proof), MPa 940
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
430
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
44
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.5
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
1.7
Embodied Energy, MJ/kg 610
22
Embodied Water, L/kg 200
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
590 to 3490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
24 to 45
Strength to Weight: Bending, points 50
22 to 33
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 71
20 to 38

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
95.1 to 96.3
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.050
1.7 to 2.0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0