Grade C-5 Titanium vs. SAE-AISI 5130 Steel
Grade C-5 titanium belongs to the titanium alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is grade C-5 titanium and the bottom bar is SAE-AISI 5130 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 310 | |
150 to 190 |
Elastic (Young's, Tensile) Modulus, GPa | 110 | |
190 |
Elongation at Break, % | 6.7 | |
12 to 22 |
Fatigue Strength, MPa | 510 | |
230 to 330 |
Poisson's Ratio | 0.32 | |
0.29 |
Shear Modulus, GPa | 40 | |
73 |
Tensile Strength: Ultimate (UTS), MPa | 1000 | |
500 to 640 |
Tensile Strength: Yield (Proof), MPa | 940 | |
330 to 530 |
Thermal Properties
Latent Heat of Fusion, J/g | 410 | |
250 |
Maximum Temperature: Mechanical, °C | 340 | |
420 |
Melting Completion (Liquidus), °C | 1610 | |
1460 |
Melting Onset (Solidus), °C | 1560 | |
1420 |
Specific Heat Capacity, J/kg-K | 560 | |
470 |
Thermal Conductivity, W/m-K | 7.1 | |
45 |
Thermal Expansion, µm/m-K | 9.6 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.0 | |
7.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.0 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 36 | |
2.2 |
Density, g/cm3 | 4.4 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 38 | |
1.4 |
Embodied Energy, MJ/kg | 610 | |
19 |
Embodied Water, L/kg | 200 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 66 | |
74 to 98 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 4200 | |
290 to 750 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 35 | |
24 |
Strength to Weight: Axial, points | 63 | |
18 to 23 |
Strength to Weight: Bending, points | 50 | |
18 to 21 |
Thermal Diffusivity, mm2/s | 2.9 | |
12 |
Thermal Shock Resistance, points | 71 | |
16 to 20 |
Alloy Composition
Aluminum (Al), % | 5.5 to 6.8 | |
0 |
Carbon (C), % | 0 to 0.1 | |
0.28 to 0.33 |
Chromium (Cr), % | 0 | |
0.8 to 1.1 |
Hydrogen (H), % | 0 to 0.015 | |
0 |
Iron (Fe), % | 0 to 0.4 | |
97.2 to 98.1 |
Manganese (Mn), % | 0 | |
0.7 to 0.9 |
Nickel (Ni), % | 0 to 0.050 | |
0 |
Oxygen (O), % | 0 to 0.25 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.035 |
Silicon (Si), % | 0 | |
0.15 to 0.35 |
Sulfur (S), % | 0 | |
0 to 0.040 |
Titanium (Ti), % | 87.5 to 91 | |
0 |
Vanadium (V), % | 3.5 to 4.5 | |
0 |
Residuals, % | 0 to 0.4 | |
0 |