MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. C84100 Brass

Grade C-5 titanium belongs to the titanium alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
65
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 6.7
13
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 1000
230
Tensile Strength: Yield (Proof), MPa 940
81

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
1000
Melting Onset (Solidus), °C 1560
810
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.5
Embodied Carbon, kg CO2/kg material 38
2.9
Embodied Energy, MJ/kg 610
48
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
24
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
7.4
Strength to Weight: Bending, points 50
9.7
Thermal Diffusivity, mm2/s 2.9
33
Thermal Shock Resistance, points 71
7.8

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
78 to 85
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Nickel (Ni), % 0 to 0.050
0 to 0.5
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Tin (Sn), % 0
1.5 to 4.5
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5