MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. C96600 Copper

Grade C-5 titanium belongs to the titanium alloys classification, while C96600 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 6.7
7.0
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 1000
760
Tensile Strength: Yield (Proof), MPa 940
480

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 340
280
Melting Completion (Liquidus), °C 1610
1180
Melting Onset (Solidus), °C 1560
1100
Specific Heat Capacity, J/kg-K 560
400
Thermal Conductivity, W/m-K 7.1
30
Thermal Expansion, µm/m-K 9.6
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
65
Density, g/cm3 4.4
8.9
Embodied Carbon, kg CO2/kg material 38
7.0
Embodied Energy, MJ/kg 610
100
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
47
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 63
24
Strength to Weight: Bending, points 50
21
Thermal Diffusivity, mm2/s 2.9
8.4
Thermal Shock Resistance, points 71
25

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
63.5 to 69.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
29 to 33
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0
0 to 0.15
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.5