MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. S20161 Stainless Steel

Grade C-5 titanium belongs to the titanium alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
250
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7
46
Fatigue Strength, MPa 510
360
Poisson's Ratio 0.32
0.28
Rockwell C Hardness 34
22
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
980
Tensile Strength: Yield (Proof), MPa 940
390

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
870
Melting Completion (Liquidus), °C 1610
1380
Melting Onset (Solidus), °C 1560
1330
Specific Heat Capacity, J/kg-K 560
490
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 4.4
7.5
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
39
Embodied Water, L/kg 200
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
360
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
26
Strength to Weight: Axial, points 63
36
Strength to Weight: Bending, points 50
29
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 71
22

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
15 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
65.6 to 73.9
Manganese (Mn), % 0
4.0 to 6.0
Nickel (Ni), % 0 to 0.050
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0