MakeItFrom.com
Menu (ESC)

Grade C-5 Titanium vs. S30435 Stainless Steel

Grade C-5 titanium belongs to the titanium alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-5 titanium and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 310
160
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7
51
Fatigue Strength, MPa 510
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
510
Tensile Strength: Yield (Proof), MPa 940
170

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
900
Melting Completion (Liquidus), °C 1610
1420
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
16
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
14
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.9
Embodied Energy, MJ/kg 610
40
Embodied Water, L/kg 200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
210
Resilience: Unit (Modulus of Resilience), kJ/m3 4200
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
18
Strength to Weight: Bending, points 50
18
Thermal Diffusivity, mm2/s 2.9
4.2
Thermal Shock Resistance, points 71
12

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0
1.5 to 3.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
66.9 to 75.5
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
7.0 to 9.0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0