MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. 5754 Aluminum

Grade C-6 titanium belongs to the titanium alloys classification, while 5754 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is 5754 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 9.0
2.0 to 19
Fatigue Strength, MPa 460
66 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 890
200 to 330
Tensile Strength: Yield (Proof), MPa 830
80 to 280

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 310
190
Melting Completion (Liquidus), °C 1580
650
Melting Onset (Solidus), °C 1530
600
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
130
Thermal Expansion, µm/m-K 9.8
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 30
8.7
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
6.1 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
47 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 55
21 to 34
Strength to Weight: Bending, points 46
28 to 39
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 63
8.9 to 14

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
94.2 to 97.4
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.4
Magnesium (Mg), % 0
2.6 to 3.6
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15