MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. A356.0 Aluminum

Grade C-6 titanium belongs to the titanium alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
70
Elongation at Break, % 9.0
3.0 to 6.0
Fatigue Strength, MPa 460
50 to 90
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 39
26
Tensile Strength: Ultimate (UTS), MPa 890
160 to 270
Tensile Strength: Yield (Proof), MPa 830
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 410
500
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1580
610
Melting Onset (Solidus), °C 1530
570
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.8
150
Thermal Expansion, µm/m-K 9.8
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 30
8.0
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 190
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
49 to 300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 55
17 to 29
Strength to Weight: Bending, points 46
25 to 36
Thermal Diffusivity, mm2/s 3.2
64
Thermal Shock Resistance, points 63
7.6 to 13

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
91.1 to 93.3
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
6.5 to 7.5
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15