MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. AISI 304L Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while AISI 304L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is AISI 304L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
160 to 350
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.0
6.7 to 46
Fatigue Strength, MPa 460
170 to 430
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
77
Tensile Strength: Ultimate (UTS), MPa 890
540 to 1160
Tensile Strength: Yield (Proof), MPa 830
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
540
Melting Completion (Liquidus), °C 1580
1450
Melting Onset (Solidus), °C 1530
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
16
Thermal Expansion, µm/m-K 9.8
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
16
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
3.1
Embodied Energy, MJ/kg 480
44
Embodied Water, L/kg 190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
71 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
92 to 1900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
19 to 41
Strength to Weight: Bending, points 46
19 to 31
Thermal Diffusivity, mm2/s 3.2
4.2
Thermal Shock Resistance, points 63
12 to 25

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
18 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
65 to 74
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0 to 0.050
8.0 to 12
Nitrogen (N), % 0
0 to 0.1
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0