MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. AISI 316N Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while AISI 316N stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is AISI 316N stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
190 to 350
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.0
9.0 to 39
Fatigue Strength, MPa 460
230 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
78
Tensile Strength: Ultimate (UTS), MPa 890
620 to 1160
Tensile Strength: Yield (Proof), MPa 830
270 to 870

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 310
940
Melting Completion (Liquidus), °C 1580
1440
Melting Onset (Solidus), °C 1530
1400
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
15
Thermal Expansion, µm/m-K 9.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 30
3.9
Embodied Energy, MJ/kg 480
53
Embodied Water, L/kg 190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
95 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
180 to 1880
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
22 to 41
Strength to Weight: Bending, points 46
20 to 31
Thermal Diffusivity, mm2/s 3.2
4.1
Thermal Shock Resistance, points 63
14 to 26

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 0
16 to 18
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
61.9 to 71.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.050
10 to 14
Nitrogen (N), % 0
0.1 to 0.16
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0