MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. ASTM A387 Grade 9 Steel

Grade C-6 titanium belongs to the titanium alloys classification, while ASTM A387 grade 9 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is ASTM A387 grade 9 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
20 to 21
Fatigue Strength, MPa 460
160 to 240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
75
Tensile Strength: Ultimate (UTS), MPa 890
500 to 600
Tensile Strength: Yield (Proof), MPa 830
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 310
600
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
26
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
2.1
Embodied Energy, MJ/kg 480
28
Embodied Water, L/kg 190
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
83 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
140 to 310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
18 to 21
Strength to Weight: Bending, points 46
18 to 20
Thermal Diffusivity, mm2/s 3.2
6.9
Thermal Shock Resistance, points 63
14 to 17

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
87.1 to 90.8
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Vanadium (V), % 0
0 to 0.040
Residuals, % 0 to 0.4
0