MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. EN 1.4107 Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
18 to 21
Fatigue Strength, MPa 460
260 to 350
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 890
620 to 700
Tensile Strength: Yield (Proof), MPa 830
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 310
740
Melting Completion (Liquidus), °C 1580
1450
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.8
27
Thermal Expansion, µm/m-K 9.8
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
7.5
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
2.1
Embodied Energy, MJ/kg 480
30
Embodied Water, L/kg 190
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
420 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
22 to 25
Strength to Weight: Bending, points 46
21 to 22
Thermal Diffusivity, mm2/s 3.2
7.2
Thermal Shock Resistance, points 63
22 to 25

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
83.8 to 87.2
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0.8 to 1.5
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Vanadium (V), % 0
0 to 0.080
Residuals, % 0 to 0.4
0