MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. CC754S Brass

Grade C-6 titanium belongs to the titanium alloys classification, while CC754S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is CC754S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
90
Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 9.0
11
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 39
40
Tensile Strength: Ultimate (UTS), MPa 890
320
Tensile Strength: Yield (Proof), MPa 830
160

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 310
120
Melting Completion (Liquidus), °C 1580
830
Melting Onset (Solidus), °C 1530
780
Specific Heat Capacity, J/kg-K 550
390
Thermal Conductivity, W/m-K 7.8
95
Thermal Expansion, µm/m-K 9.8
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
30

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 30
2.8
Embodied Energy, MJ/kg 480
47
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
29
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
130
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 55
11
Strength to Weight: Bending, points 46
13
Thermal Diffusivity, mm2/s 3.2
31
Thermal Shock Resistance, points 63
10

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0 to 0.8
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
57 to 63
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
0 to 0.7
Lead (Pb), % 0
0.5 to 2.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
0 to 1.0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 2.0 to 3.0
0 to 1.0
Titanium (Ti), % 89.7 to 94
0
Zinc (Zn), % 0
30.2 to 42.5
Residuals, % 0 to 0.4
0