MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. SAE-AISI 1006 Steel

Grade C-6 titanium belongs to the titanium alloys classification, while SAE-AISI 1006 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is SAE-AISI 1006 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
94 to 100
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
22 to 33
Fatigue Strength, MPa 460
140 to 210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 890
340 to 370
Tensile Strength: Yield (Proof), MPa 830
180 to 300

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1580
1470
Melting Onset (Solidus), °C 1530
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
53
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 30
1.4
Embodied Energy, MJ/kg 480
18
Embodied Water, L/kg 190
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
75 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
86 to 240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
12 to 13
Strength to Weight: Bending, points 46
14 to 15
Thermal Diffusivity, mm2/s 3.2
14
Thermal Shock Resistance, points 63
10 to 11

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.080
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
99.43 to 99.75
Manganese (Mn), % 0
0.25 to 0.4
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0