MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. S30600 Stainless Steel

Grade C-6 titanium belongs to the titanium alloys classification, while S30600 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is S30600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
180
Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
45
Fatigue Strength, MPa 460
250
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 39
76
Tensile Strength: Ultimate (UTS), MPa 890
610
Tensile Strength: Yield (Proof), MPa 830
270

Thermal Properties

Latent Heat of Fusion, J/g 410
350
Maximum Temperature: Mechanical, °C 310
950
Melting Completion (Liquidus), °C 1580
1380
Melting Onset (Solidus), °C 1530
1330
Specific Heat Capacity, J/kg-K 550
490
Thermal Conductivity, W/m-K 7.8
14
Thermal Expansion, µm/m-K 9.8
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.6
Embodied Carbon, kg CO2/kg material 30
3.6
Embodied Energy, MJ/kg 480
51
Embodied Water, L/kg 190
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
220
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
22
Strength to Weight: Bending, points 46
21
Thermal Diffusivity, mm2/s 3.2
3.7
Thermal Shock Resistance, points 63
14

Alloy Composition

Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0 to 0.018
Chromium (Cr), % 0
17 to 18.5
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
58.9 to 65.3
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.050
14 to 15.5
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
3.7 to 4.3
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0