MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. 520.0 Aluminum

Grade CU5MCuC nickel belongs to the nickel alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
66
Elongation at Break, % 22
14
Fatigue Strength, MPa 170
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 580
330
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1370
480
Specific Heat Capacity, J/kg-K 460
910
Thermal Expansion, µm/m-K 13
25

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 7.7
9.8
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 230
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
39
Resilience: Unit (Modulus of Resilience), kJ/m3 190
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 20
35
Strength to Weight: Bending, points 19
41
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
87.9 to 90.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.5
0 to 0.25
Iron (Fe), % 22.2 to 37.9
0 to 0.3
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
0
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15