MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. 707.0 Aluminum

Grade CU5MCuC nickel belongs to the nickel alloys classification, while 707.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is 707.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 22
1.7 to 3.4
Fatigue Strength, MPa 170
75 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 580
270 to 300
Tensile Strength: Yield (Proof), MPa 270
170 to 250

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1370
600
Specific Heat Capacity, J/kg-K 460
880
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 230
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.3 to 8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190
210 to 430
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 20
26 to 29
Strength to Weight: Bending, points 19
32 to 34
Thermal Shock Resistance, points 16
12 to 13

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0.2 to 0.4
Copper (Cu), % 1.5 to 3.5
0 to 0.2
Iron (Fe), % 22.2 to 37.9
0 to 0.8
Magnesium (Mg), % 0
1.8 to 2.4
Manganese (Mn), % 0 to 1.0
0.4 to 0.6
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
0
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 4.5
Residuals, % 0
0 to 0.15