MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. EN AC-47000 Aluminum

Grade CU5MCuC nickel belongs to the nickel alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 22
1.7
Fatigue Strength, MPa 170
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 580
180
Tensile Strength: Yield (Proof), MPa 270
97

Thermal Properties

Latent Heat of Fusion, J/g 310
570
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1420
590
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 13
21

Otherwise Unclassified Properties

Base Metal Price, % relative 45
9.5
Density, g/cm3 8.2
2.6
Embodied Carbon, kg CO2/kg material 7.7
7.7
Embodied Energy, MJ/kg 110
140
Embodied Water, L/kg 230
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 190
65
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
27
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0 to 0.1
Copper (Cu), % 1.5 to 3.5
0 to 1.0
Iron (Fe), % 22.2 to 37.9
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0 to 1.0
0.050 to 0.55
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
0 to 0.3
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25