MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. C17465 Copper

Grade CU5MCuC nickel belongs to the nickel alloys classification, while C17465 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 22
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 580
310 to 930
Tensile Strength: Yield (Proof), MPa 270
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 45
45
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.7
4.1
Embodied Energy, MJ/kg 110
64
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 190
64 to 2920
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
9.7 to 29
Strength to Weight: Bending, points 19
11 to 24
Thermal Shock Resistance, points 16
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0
Copper (Cu), % 1.5 to 3.5
95.7 to 98.7
Iron (Fe), % 22.2 to 37.9
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
1.0 to 1.4
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5