MakeItFrom.com
Menu (ESC)

Grade CU5MCuC Nickel vs. C18400 Copper

Grade CU5MCuC nickel belongs to the nickel alloys classification, while C18400 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade CU5MCuC nickel and the bottom bar is C18400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 22
13 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 580
270 to 490
Tensile Strength: Yield (Proof), MPa 270
110 to 480

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1070
Specific Heat Capacity, J/kg-K 460
390
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 45
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 7.7
2.6
Embodied Energy, MJ/kg 110
41
Embodied Water, L/kg 230
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
54 to 980
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 20
8.5 to 15
Strength to Weight: Bending, points 19
10 to 16
Thermal Shock Resistance, points 16
9.6 to 17

Alloy Composition

Arsenic (As), % 0
0 to 0.0050
Calcium (Ca), % 0
0 to 0.0050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19.5 to 23.5
0.4 to 1.2
Copper (Cu), % 1.5 to 3.5
97.2 to 99.6
Iron (Fe), % 22.2 to 37.9
0 to 0.15
Lithium (Li), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 38 to 44
0
Niobium (Nb), % 0.6 to 1.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.7
Residuals, % 0
0 to 0.5