MakeItFrom.com
Menu (ESC)

Grade CW12MW Nickel vs. AWS E316H

Grade CW12MW nickel belongs to the nickel alloys classification, while AWS E316H belongs to the iron alloys. They have a modest 39% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade CW12MW nickel and the bottom bar is AWS E316H.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 4.6
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 85
78
Tensile Strength: Ultimate (UTS), MPa 560
580

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 410
470
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 70
20
Density, g/cm3 9.1
7.9
Embodied Carbon, kg CO2/kg material 13
4.0
Embodied Energy, MJ/kg 180
55
Embodied Water, L/kg 280
160

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Shock Resistance, points 16
15

Alloy Composition

Carbon (C), % 0 to 0.12
0.040 to 0.080
Chromium (Cr), % 15.5 to 17.5
17 to 20
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 4.5 to 7.5
58.6 to 69.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 16 to 18
2.0 to 3.0
Nickel (Ni), % 49.2 to 60.1
11 to 14
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 3.8 to 5.3
0
Vanadium (V), % 0.2 to 0.4
0