MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. 4343 Aluminum

Grade CW2M nickel belongs to the nickel alloys classification, while 4343 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is 4343 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 23
4.4
Fatigue Strength, MPa 190
45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 83
27
Tensile Strength: Ultimate (UTS), MPa 560
110
Tensile Strength: Yield (Proof), MPa 310
62

Thermal Properties

Latent Heat of Fusion, J/g 330
510
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1520
620
Melting Onset (Solidus), °C 1460
580
Specific Heat Capacity, J/kg-K 430
900
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.8
2.6
Embodied Carbon, kg CO2/kg material 12
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.1
Resilience: Unit (Modulus of Resilience), kJ/m3 220
27
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 18
12
Strength to Weight: Bending, points 17
20
Thermal Shock Resistance, points 16
5.2

Alloy Composition

Aluminum (Al), % 0
90.3 to 93.2
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 0 to 2.0
0 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
6.8 to 8.2
Sulfur (S), % 0 to 0.030
0
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15