MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. 6023 Aluminum

Grade CW2M nickel belongs to the nickel alloys classification, while 6023 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 23
11
Fatigue Strength, MPa 190
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 560
360
Tensile Strength: Yield (Proof), MPa 310
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
580
Specific Heat Capacity, J/kg-K 430
890
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.8
2.8
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 220
670 to 690
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 18
35 to 36
Strength to Weight: Bending, points 17
40
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0
Copper (Cu), % 0
0.2 to 0.5
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0.6 to 1.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 1.2
Tungsten (W), % 0 to 1.0
0
Residuals, % 0
0 to 0.15