MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. 7022 Aluminum

Grade CW2M nickel belongs to the nickel alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
6.3 to 8.0
Fatigue Strength, MPa 190
140 to 170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 560
490 to 540
Tensile Strength: Yield (Proof), MPa 310
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1520
640
Melting Onset (Solidus), °C 1460
480
Specific Heat Capacity, J/kg-K 430
870
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 12
8.5
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1100 to 1500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 18
47 to 51
Strength to Weight: Bending, points 17
47 to 50
Thermal Shock Resistance, points 16
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0.1 to 0.3
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 1.0
0.1 to 0.4
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15