MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. 710.0 Aluminum

Grade CW2M nickel belongs to the nickel alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 23
2.2 to 3.6
Fatigue Strength, MPa 190
55 to 110
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 560
240 to 250
Tensile Strength: Yield (Proof), MPa 310
160

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1520
650
Melting Onset (Solidus), °C 1460
610
Specific Heat Capacity, J/kg-K 430
870
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.8
3.0
Embodied Carbon, kg CO2/kg material 12
8.0
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 220
180 to 190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 17
29
Thermal Shock Resistance, points 16
10 to 11

Alloy Composition

Aluminum (Al), % 0
90.5 to 93.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15